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Quantum Net Dynamics 
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The quantum net unifies the basic principles of quantum theory and relativity 
in a quantum spacetime having no ultraviolet infinities, supporting the Dirac 
equation, and having the usual vacuum as a quantum condensation. A correspon- 
dence principle connects nets to Schwinger sources and further unifies the vertical 
structure of the theory, so that the functions of the many hierarchic levels of 
quantum field theory (predicate algebra, set theory, topology,..., quantum 
dynamics) are served by one in quantum net dynamics. 

1. I N T R O D U C T I O N  

The Dirac equat ion is the most  fruitful un ion  of  relativity and quan tum 
principles we have so far, and any deeper  fusion of  these principles must  
support  it. Here I discuss an alternative to the concept  o f  the quan tum field, 
a finite concept  o f  quan tum net (Finkelstein, 1987) that  satisfies s tronger 
principles o f  locality, superposi t ion,  and relativity than field theory,  and 
supports  the Dirac equation.  Quan tum net dynamics  has a fundamenta l  
time or  ch ronon  1~ whose singular limit as ~-~ 0 is the transit ion f rom 
quan tum to classical spacetime. There is a natural  trial ~ vector  for 
Vacuum I possessing a hypercubical  symmetry,  yet exactly Lorentz  invariant,  
and support ing a local act ion principle leading to the Dirac equation. 

The events o f  the quan tum net are themselves quan tum nets, and even 
more  than the spacetime points o f  Snyder  (1947), are treated by quan tum 
kinematic,  group,  and dynamical  principles, with Fe rmi -Di rac  statistics 
[not  Maxwel l -Bo l t zmann  as for Snyder  (1947) nor  Bose-Einste in  as for  
Finkelstein (1969)]. 

Here are the main guiding principles o f  this p rogram of  theory construc- 
tion, with the unders tanding that they evolve with the theory. 
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1.1. Locality 

Locality (of the Einstein kind) is the principle that fundamental con- 
cepts and laws connect events only to their infinitesimal neighborhood. It 
impels us to seek what these events are, and what connects them to their 
neighbors. Locality convinced Newton that even his own beautiful and 
powerful nonlocal theory of gravity was merely phenomenological rather 
than fundamental, leaving it to Einstein to provide the first plausible local 
theory of gravity. Today, with Bell's theorem, locality decides in favor of 
the quantum principle of superposition and against its classical reformula- 
tions, which are nonlocal theories. Thus, when it has come down to a choice 
of  physical theories, locality has at critical junctures been given more weight 
even than accurate experimental predictions and common sense, and this 
judgment has been vindicated subsequently by further experimental suc- 
cesses. Locality today is combined with causality so that the neighborhoods 
it refers to are defined as causal neighborhoods, and applied to the action 
principle. The furthest form that locality has taken in this century is the 
gauge theory of fundamental forces. Here, far from giving up locality, I 
extend it. Locality has paid off so magnificiently that it is natural to explore 
what results if we make our other principles consist with it by "localizing" 
them. 

1.2. Local Nonunitarity 

Unitarity is a nonlocal concept, referring to an integral over all space 
at one time, so it cannot be fundamental. (A given unitary theory may be 
local; but the class of unitary theories is a nonlocal class.) It is meaningless 
or a contradiction in terms to ask that the fundamental local processes of 
nature be unitary, for unitarity applies only to the global process. Since 
unitarity works too well to be dropped, we localize it as follows. 

1.3. Local Organization 

If we accept locality, then when a phenomenological theory postulates 
a global symmetry principle, such as unitary or Poincar6 invariance, it is 
up to the fundamental theory to provide a local foundation. Macroscopic 
structures generally exhibit less symmetry than the dynamical laws that 
govern them locally, as in crystallization and magnetization. The usual name 
"spontaneous symmetry-breaking" for this phenomenon expresses the 
failure of the theorist rather than the accomplishment of the experimentalist; 
the crystal has less symmetry than the vacuum, to be sure, but it has more 
symmetry and order than the melt from which it crystallizes. In this 
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phenomenon the dynamical evolution does not break the symmetry of the 
system, but increases it, at the price of a decrease in order elsewhere. 
Moreover, in some processes of this general kind, such as biological ones, 
the order that increases is more complex than is expressed by a group of 
transformations, and symmetry is not the relevant measure of order. In 
general, a nonlocal order that arises spontaneously from local interactions 
and is maintained by them we call local organization; it is likely that this 
concept overlaps with the autopoeisis of Maturana, but I am not sufficiently 
sure to use his term. Spontaneous symmetry-breaking is a special case of 
local organization. 

The unitarity taken as fundamental by quantum field theory, being 
nonlocal, cannot be fundamental in net theory; we recover it through local 
organization. 

None of  our initial principles of relativity (Poincar6 invariance), super- 
position, and finiteness are local. Unlike unitarity, however, they may be 
applied at the local level, becoming local relativity, local superposition, and 
local finiteness. These we take as fundamental in quantum net dynamics. 
They are described in paragraphs that follow. 

1.4. Local Finiteness 

Having learned that the world need not be Euclidean in the large, the 
next tenable position is that it must at least be Euclidean in the small, a 
manifold. The principle of  infinitesimal locality presupposes that the world 
is a manifold. But the infinities of the manifold (the number of events per 
unit volume, for example) give rise to the terrible infinities of classical field 
theory and to the weaker but still pestilential ones of quantum field theory. 
Further, the manifold postulate freezes local topological degrees of freedom 
which are numerous enough to account for all the degrees of freedom we 
actually observe. It is imperative to explore beyond the manifold. 

The next bridgehead is a dynamical topology, in which even the local 
topological structure is not constant but variable and, in the most monistic 
extrapolation of the theory, is the only variable there is. The problem of 
coping with all topologies of infinitely many points is so absurdly unphysical, 
as well as unfeasible, that dynamical topology virtually forces us to a more 
atomistic conception of  causality and spacetime than the continuous mani- 
fold, and to a finite locality of immediate neighborhoods rather than 
infinitesimal ones. In quantum net dynamics, the manifold arises as an 
approximate description of a spontaneously organized net which prevails 
in the moderate pressures and temperatures of  ordinary experience, and is 
a necessity for life, but is contingent and not truly fundamental in nature. 
Local finiteness has contended against the continuum principle for millenia, 
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but futilely since the advent of classical mechanics. I give evidence of its 
renewed viability in this work. 

1.5. Local Superposition 

The quantum principle of superposition states that the physical proper- 
ties or predicates of the system form, not a Boolean algebra, but a projective 
geometry. Then, vectors represent maximal predicates (predicates giving 
maximal information). The term superposition refers to the linear combina- 
tion of such vectors, which leads from determinate cases to indeterminate 
ones. 

If  fundamental principles must be local, and superposition is to be 
fundamental, we must expect a principle of local superposition: The 
independent local elements of the world and their causal connections to 
their neighbors are also subject to quantum superposition. Their predicates, 
too, form projective geometries. This seems to be a relatively new and fertile 
extension of the superposition principle. It is violated by quantum field 
theories, which superpose global ~ vectors and ~b vectors for fields at a 
point (if such entities make sense at all), but build spacetime from classical 
spacetime points, not quantum ones. In quantum field theory, for example, 
a point is represented by four coordinates, and any property of a point by 
a subset of the space of real-number quadruples R 4. Such properties of 
points do not admit quantum superposition. 

Local superposition means that the global quantum system must be 
composed of local quantum systems. This kind of composition is common 
in classical physics, where (say) manifolds are composed of neighborhoods, 
and lattices are composed of edges. Classical physics accomplishes it with 
the operator of set formation written {a } nowadays and ~a by Peano (1888). 
In the classical lattice, for example, we first combine points p,p' ,  p " , . . .  
into pairs {p,p'}, {p,p"}, . . .  and then combine the pairs into the lattice 
{{p, p'}, {p, p"},.. .}, without omitting the pair structure. In Peano's more 
algebraic notation, this set of pairs is ~(~(p vp')  v ~(p vp") v . . . ) .  If  we 
combined all the points without Vs, as p v p'v p " , . . . ,  we would lose the 
lattice topology. The operator ~ is the vertebra of classical mathematics: In 
a natural formulation of the algebra of sets, ~ is the sole rank-raising 
operation. In Peano's theory of the natural numbers, ~ becomes the successor 
function. Here we use L for causal succession. 

The analog of the combination p v p' in quantum theory is a tensor 
product, possibly symmetrized or antisymmetrized, depending on statistics. 
But if we combine all the quantum elements of a global system directly, 
say by a tensor product, we lose their topology. We must first combine them 
into cells, and then combine the cells without losing the distinction between 
them. This implies a hierarchical combination of quantum systems not used 
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in quantum field theory or earlier forms of quantum mechanics. But the 
standard quantum kinematics lack any analog for ~, and are therefore forced 
to cling parasitically to classical host theories for their backbone, as 
in canonical quantization. A free-standing quantum theory needs its 
own ~. 

Since we use elementary set theory to express the hierarchy of classical 
organizations, as above, I form a quantum set theory for quantum organiz- 
ations with an operator analogue of the Cantor bracket {. } and the Peano 
~. This quantum set theory is thus an outcome of relativistic locality and 
quantum superposition in their strong senses. The operator L first appeared 
as a (second Fermi-Dirac) quantization operator Q in an earlier attempt 
at quantum set theory (Finkelstein et  al., 1959, Part III). In the net interpreta- 
tion, ~ serves as a dynamical operator as well. 

A second extension of the superposition principle in this work derives, 
not from locality, but from intensionality. The quantum logic and set theory 
I use here have an important symmetry that the usual (Von Neumann) one 
lacks. Intensionality is the principle that every set is associated with a 
predicate of membership in that set; this association is an isomorphism 
from the algebra of sets into that of classes. The predicate is called the 
intension of the set, and the set of the extension of the predicate. Extensional- 
ity is the principle that every class is the intension some set, its extension. 
Originally assumed for classes in general, extensionality led to famous 
antinomies and had to be weakened; here we use it for our finite predicates 
without such problems. 

In the usual quantum kinematics of the electron, predicates (= classes) 
are subspaces of  the one-electron Hilbert space/-/1, while a set of electrons 
(say the set of the electrons in a given silver atom) is maximally described 
by a qJ vector in the Grassmann algebra o v e r  H 1 . Evidently there are many 
more electron sets than electron classes in quantum kinematics. This violates 
intensionality. Since it would be unprecedented for the quantum theory to 
have less symmetry than the classical, my quantum set theory uses the same 
Grassmann algebra for both classes and sets, restoring and enlarging the 
classical symmetry. Now quantum classes are subject to superposition just 
as quantum sets (Fermi-Dirac ensembles) are. 

This fusion is crucial for quantum net dynamics and has the following 
curious consequence. 

Second Fermi-Dirac quantization imbeds a linear space H in the 
Grassmann algebra over H, which I write as VH, and maps the vectors qJ 
of H into generators of VH. Since ~ does these, we may call it a quantization 
operator. (Quantification would be a better name than quantization, since 

leads from a theory of "True or false?" to one of "How many?")  
Quantization is ordinarily not usable as a dynamical operator, since it 
enlarges the Hilbert space, but is carried out only by the theorist in setting 
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up the kinematics, perhaps once or twice or (nowadays) thrice during the 
invention of a theory. 

For nets, ~ is a dynamical operator, something that can occur in nature, 
because VQET = QET. Quantization occurs at least 1026 times per second in 
the vacuum nets described below. 

The preceding sentence would be a meaningless word-salad in the 
standard quantum theory. We can combine quantum concepts like quantiz- 
ation with spacetime concepts like "times per second" so freely because 
net theory is such an intimate union of quantum theory and relativity. 

Net theory unifies two superposition processes that are usually con- 
sidered to belong to different species: the addition of classical spacetime 
vectors, like displacements or momenta,  and the addition of ~ vectors. In 
the nets described below these are not dinstinct processes that merely happen 
to be mathematically similar, but are the same process, carried out on a 
macroscopic ~ vector or on a microscopic one, respectively. 

Local superposition provides a local linear space that permits us to 
formulate a quantum principle of  local relativity: The Lorentz group (in its 
most fundamental ,  spinor, form SL2) acts upon the linear space of @ vectors 
describing the immediate neighbors of an event and respects their causal 
connection. We return to local relativity in a later paragraph. 

1.6. Strong Snperposition 

A third extension of  superposition beyond that of  Heisenberg's quan- 
tum theory occurs in Schwinger (1970) source theory and is further extended 
here. By the strong superposition principle I mean that all physical processes 
have maximal descriptions that may be superposed by vector addition. 
When two processes cannot be so superposed, we say that a superselection 
rule separates them. In ordinary quantum mechanics, we superpose input 
processes, represented by kets, and output processes, represented by bras, 
but we do not superpose input processes with output ones. This is a kind 
of superselection rule, and it is first removed in a more global or diachronic 
description of physical processes, relative to which the original theories of 
Heisenberg and SchrSdinger appear  as synchronic. I explain these terms 
next. 

1.7. Synchronic and Diachronic Descriptions 

A synchronic description describes its domain instant by instant. The 
vectors of  the Heisenberg and SchrSdinger theories are synchronic descrip- 
tions, but one cannot tell from a vector of  these theories what is the instant 
it describes. Time is specified outside their Hilbert space structure, as a 
parameter  on which vectors or operators may depend. Synchronic theories 
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represent an experimental input process at time 0, as well as a dynamically 
equivalent one at some other time, by a vector (-], in a fixed Hilbert space 
H, and an output process by a dual vector I" (, with probabiliy amplitude 
represented by a symbol of the form ]. (. I. They compress an input process 
that may actually be distributed over time into one initial instant. They 
assign input and outputs to different linear spaces, thus preventing their 
linear superposition and tacitly positing a superselection rule. Synchronic 
quantum theories describe an experiment as a dialogue between the injection 
group and the ejection group of the laboratory. 

Moreover, these theories take it for granted that time is a manifold; 
relativity then makes spacetime one as well. We cannot freely explore the 
dynamics of  the topology of time in a theory which fixes this structure by 
postulation, like the quantum theories. This is the original reason for using 
a diachronic description here; the strong superposition principle is an 
afterthought. 

The Schwinger and Feynman quantum action principles are diachronic 
theories. So is Schwinger source theory (Schwinger, 1970), where an element 
(. ] of  a linear space S describes both input and output ( i /o) processes over 
the entire experimental spacetime region, allowing their superposition and 
lifting the superselection law between them. The vectors of S are called 
sources, and describe targets or sinks as well. The distinction between input~ 
and output vectors is then made within S on the basis of  the sign of the 
frequency; we arbitrarily assign the time dependence e +i'~ to an output or 
target process, and e -i~ to an input or source, where w > 0. Source theory 
presupposes the spacetime manifold and is to emerge as a limit of net 
theory, which does not, as the net constant 1~--> 0. 

For fermions, S is an algebra with the addition operation ( + )  for 
quantum superposition, a constant i that (like 1) stands for the vacuum as 
an element of S and for a quantum phase shift of a quarter period as a 
multiplier on $, and a Grassmann product v for the combination of  i /o  
processes. We may call the first-grade generators of  S elementary sources, 
and the higher-grade ones composite. If the algebra S is to be free of 
superselection laws, then its underlying ring of coefficients must be commu- 
tative; we provisionally assume the complex numbers C as is usual. 

There are no dynamical equations governing the sources of S. These 
are external sources, freely determined by the experimenter, whose dynamics 
is not under study. 

Each vector I" ( of the dual space S D assigns a probability amplitude 
I" (" I to each source (. 1- It therefore expresses a dynamical law or force law, 
and is called a field. The first-grade generators of S D are dual to elementary 
sources and are called elementary fields. Fields, too, are subject to no 
dynamical equations; these are external fields. In the toy system of crossed 
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polarizers, a source vector (.[ of grade two describes both polarizers at 
once, and a field dual vector [. ( describes (say) sugar water between them. 

Diachronic theories describe the experiment as a dialogue between the 
external field group and the i /o  group of the laboratory. 

The semantics of  a diachronic theory assigns vectors to experimental 
sources and dual vectors to experimental fields. Where a synchronic theory 
may suppose that every vector in its Hilbert space H represents a possible 
input process, a diachronic one would postulate that every vector in S and 
every dual vector in S D represent possible sources and fields. In accord 
with strong superposition, we freely add vectors in S to dual ones in S D, 
the two anticommuting with each other; that is, the most general diachronic 
process is maximally described by a vector in the Grassmann algebra 
V(S10) $1 ~  over the linear space of first-grade sources and fields. 

Regarded as a diachronic description, Feynman's path amplitude rep- 
resents a dynamical law, not an i /o  process, and therefore may be identified 
with an element of S D, not S. 

I turn now to the implementation of the above principles. The standard 
support for the Dirac equation in the presence of gravity today is a Bergmann 
(1957) or spin manifold B2. Others include the checkerboard of Feynman 
and Hibbs (1965) and Feynman (1972) and the spacetime code of Finkelstein 
(1969). The present net theory grows from these, the causal manifold of 
Alexandroff (1956), and the spin net of Penrose (1971). I regard a spin 
manifold B2 as a map of  the world for a global observer who coordinates 
a network of local quantum spin experimenters. The fundamental entities 
of a B2 are (see Appendix for notation): 

�9 The metric form, or Infeld-van der Waerden form, which is a linear 
2x2-Hermitian-matrix-valued form g ( v , x ) = g s ( x ) v  ~ with gs = 
(g~z.~) (in many papers g is written or). 

�9 A spinor connection Os~2,, 
These admit quantum interpretations: 

�9 g(v, x) is the quantum probability metric in the Hilbert space of spin 
at a spacetime point x for an experimenter with world-velocity v s. 
Hence the name metric form. 

�9 - i h D ~  is the energy-momentum (kinetic plus potential) operator of 
a spin-�89 quantum. 

The proper  time interval is expressed in terms of  the linear metric form 
gs(v) by IIdx[[ = g,~, dx ~ dx  ~'= det[g(  dx) ]; thus, the linear metric form gs(v)  
required for the Dirac equation describes gravity and the spacetime 
pseudometric quadratic form &,, as well as the local quantum spin metric. 
A generalization BN with N-component  spinors (Finkelstein, 1986) is also 
a helpful stepping stone to net theory. 
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The quantum net provides a quantum theory of the B2 spacetime, and 
thus of gravity, but not a canonical one. I point out an alternative to 
canonical quantization for gravity: 

1.8. Coherent Quantization 

For a quantum theory of spacetime structure, judging from experience 
with macroscopic matter, we must choose between two ways, incoherent 
and coherent, to extract macroscopic classical variables from microscopic 
quantum ones as I~ ~ 0. In both, large quantum ensembles produce macro- 
scopic classical behavior, but these ensembles may be incoherent (like the 
Thomas-Fermi model of the atom) or coherent (like superfluids). In the 
incoherent case, a probability distribution p emerges as the classical vari- 
able; in the coherent, a probability amplitude distribution ~0. We may call 
the respective inverse processes, going from macroscopic theory to quantum, 
incoherent and coherent quantization, according as they start without or 
with quantum phase data. 

I am driven to a coherent quantum scheme by a persistent problem 
with any incoherent one: In any construction of spacetime from spinors, 
spacetime vectors do not transform as spinor statistical operators pA under 

1 1 SL2, but as pair amplitudes ~0A*n; not as D(1, 0 )~  D(0, 0), but as D(~, ~). 
I understand this now as follows. 

Canonical quantization undoes the classical limit. Canonical quantiz- 
ation of spacetime structure (or of a harmonic oscillator or a hydrogen 
atom) would yield a system having the usual spacetime (or oscillator or 
atom) as a high-quantum-number excitation. In the classical limit of many 
excitations we lose all quantum phase information. Canonical quantization 
thus begins from a theory without quantum phases; it is an incoherent 
quantization. The underlying quantum system "heats up" to the classical 
one. 

In superfluidity and superconductivity, we meet macroscopic systems 
with low quantum numbers, not high ones. Their macroscopic variables--the 
current in the superconductor, the velocity in the superfluid, the potential 
difference of the Josephson junction--carry quantum phase information, 
preserved because the underlying system "freezes" to the macroscopic one. 
To recover the quantum system, we must use the phase information carried 
by the macroscopic description; this is coherent quantization. 

Nambu long ago pointed out that the physical vacuum is likely a 
quantum condensation, a low-quantum-number limit, and this is now rather 
widely accepted; for example, the latent heat of this phase transition is 
supposed to drive the inflation of the early universe. In quantum net 
dynamics, spacetime structure, too, is a macroscopic quantum effect; the 
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quantum net freezes to our usual spacetime rather than heating up to it. 
We do not quantize spacetime canonically, any more than one does the 
hydrodynamics of liquid helium II. We construct a quantum dynamical 
system whose macroscopic quantum ~b vectors define a classical spacetime. 
We start from ~b's carrying quantum phase information; this is a coherent 
quantization. There are systematic procedures for canonical quantization, 
but not for coherent. 

Here I quantize spacetime structure by giving a quantum spacetime 
whose coherent macroscopic kets define a B2 in the classical continuum 
limit. Henceforth in this paper, quantization means coherent quantization. 

The simplest finite (and hence necessarily nonunitary) way to express 
local relativistic invariance, local causality, and local quantum superposition 
is not by a field theory, but by a net of dynamical relations with a fundamental 
time 13. 

To explore this net as an alternative to the continuum, I give a trial 
vacuum net approaching Minkowski spacetime in the continuum limit and, 
like B2, designed to support Dirac's equation. Its regular crystallike structure 
recalls Feynman's checkers game for the two-dimensional Dirac equation, 
as well as the crystalline aether of Newton's O p t i c k s .  It has coordinate and 
derivative operators x s and 0s defined for all values of the fundamental 
time 13, but normal ("observables") only in the continuum limit. The global 
unitary structure of the continuum quantum theory emerges from this 
nonunitary net theory in a nonuniform approach to the classical continuum. 

The operators of quantum set theory have the syntax of a relativistic 
quantum theory, but we do not have a quantum theory until we connect 
these operators to physical determinations. It is useful to do this by a 
correspondence principle connecting the net theory in the continuum limit 
to the Feynman-Schwinger action principle. 

An action principle for nets results from quantizing the spacetime in 
the continuum action principle. As an exercise in net dynamics, and to test 
its viability, from the action principle for the Dirac equation I derive a 
covariant local action for holes in the vacuum net leading to a Weyl or 
Dirac equation in the classical continuum limit. 

2. THE CONCEPT OF THE NET 

First I present a classical theory of nets, and then I quantize it (coher- 
ently, as has already been stipulated). 

2.1. Classical Net 

In the most familiar formulation of a causal structure, the elementary 
entities are point events a , /~ , . . ,  and they support a causal relation aC/~, 
a set of pairs. At once locality compels us to reject C as fundamental 
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variable in favor of its germ, the local connection relation ae/3, " a  connects 
t o /3 "  (it being understood that this connection is meant to be immediate 
and directed from cause a to effect/5). 

I am guided at this point (and several others) by the superposition 
principle: Fundamental descriptions are coherent. (In Von Neumann's 
parlance, they are pure cases.) This means they give maximal information. 
In this sense.,statistical mechanics is less fundamental than quantum 
mechanics, the Birkhoff-Von Neumann quantum logic of c~ and w is less 
fundamental than the usual Hilbert space theory, and dissipative processes 
are less fundamental than isentropic ones. (This does not mean less true. 
Incoherent descriptions are safer bets than coherent ones just because they 
give less information.) 

In the present application, since equations give more information than 
inequalities, coherence impels us to seek an equational theory, not a rela- 
tional one. We take as fundamental not the causal relation ae/3, which says 
little about/3, as in Finkelstein (1969), but the dynamical equation 

/3 = ~(~,,~) (1) 

stating that event/5 is the successor of dynamical process 6 and event a, 
which defines /3 completely in the classical theory and maximally in the 
quantum one. This change in expression from relations to equations makes 
no difference in the classical theory, but it affects the quantization: we 
quantize ~, not c. I represent equation (1) by a figure such as Figure 1, 
which represents an event and two possible successors. 

Let SET be the algebra whose elements are sets and whose operations 
are a monadic operation L and a dyadic one v,  graded by cardinality: 
SET= SETo U SET1 U SET2 • . . . ,  where SETo consists solely of  the null set, 
SET1 consist of all monads (unit sets), SET2 of  all pair s e t s , . . . .  Here "set" 
means "hereditarily finite set", a finite expression in the three symbols 

1 null set 
set operator (Peano, 1888); La, also written {a}, is the monad (unit 
set) of a ;  ~: S E T < - ~ S E T  1 is bijective 

v disjoint union (Peirce, 1868a, b)2: a v/3 = a u/3 when a n f l  = 1; 
otherwise 0 (undefined); commutative, associative, and with iden- 
tity 1 

Fig. 1. A binary node. 

2My 0 and v are Peirce's ~ and +. My nets recall his logic diagrams. 
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and parentheses or Polish notation. The number of nested {. }'s in a set is 
called its rank. The number of monadic factors is its grade. 

Interpretation. We express any net as a set by associating monads 
a,/3 . . . .  with events and writing 

,8 ={a ,v  . . .  v aN}=:l,(OqV . . .  Va'N) (1') 

to mean that the event fl is the successor o f  the a. 
We call equation (1) an N-ary node if there are N independent possible 

6's. Every set defines a net of such nodes. There are no causal loops in any 
net, nor two distinct events with the same inputs. The group of the N-ary 
node (1) is SN, the symmetric group on the B's. 

2.2. Quantum Net  

The quantization of SET is a generative Grassmann algebra QET= 
QEToG QET1G.. .  graded by cardinality, whose elements are the kets of the 
quantum set, or qets for short. A qet is a finite expression in 

i imaginary unit. 
v Grassmann product; commonly ^,  but see Peano (1888) 

qet operator, also written (-[; ~: QET-> QET1 is antilinear and 
bijective 

+ quantum superposition, Grassmann addition 

The top three symbols in this list correspond in interpretation to those 
of SET; ~ = (" [ makes QET self-generating; + with its quantum interpretation 
makes QET a quantum theory. 

The qet bracket (. [ unifies Cantor's set bracket {. }, Dirac's ket bracket 
('1, and Grassmann's extensions, in that qets add like kets, nest like sets, 
and multiply like extensions, as in equations (2t), (22), and (3) below. Dual 
qets are written [. (, so that operators (. [. ( look like arrows, and transition 
amplitudes [. (. ]like numbers. 

Interpretation. I propose that QET describes a universal quantum entity, 
in the sense that SET does a universal finite mathematical One. Here I give 
QET a specific interpretation: A qet describes a quantum net of  dynamical 
nodes completely in Bohr's sense of the word, and incompletely but 
maximally in Von Neumann's.  It is a plausible thesis that set theory is a 
universal language for mathematics, and finite set theory for finite mathe- 
matics. Therefore it may sound disappointingly trivial to propose that the 
physical world may be well described by quantum sets. How could it not 
be? But usually the same set symbols are given an enormous number of  
different interpretations in physics, according to need; just consider, say, 
the variety of physical quantities that are represented by numbers. The 
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actual language is then not set theory, but a much richer one, with many 
logically independent concepts, each with its own label from outside set 
theory. Here we give each of the three set symbols 1, v ,  ~ a single physical 
interpretation in all its occurrences. This is a genuine unification. 

To make it work I have had to adapt  the set theory slightly. Our physical 
set theory does not have exactly the same primitives Q, u ,  ~ as the usual 
mathematical  set theory. The null set O survives as 1, but w and ~ have 
been replaced by v and ~ to meet the needs of  quantum physics. I have 
modified quantum logic as well as classical set theory to produce this fusion, 
by restoring intensionality. 

The Grassmann operations on qets have the usual quantum meanings 
given to them in the theory of many fermions, which are natural extensions 
of  the classical meanings of  the corresponding operations on sets. Read 
now as an equation among qets, (1) means that the successor of  the quantum 
events ~ and a is/3. Qets form a Grassmann algebra graded by cardinality 
and generated by the operator  5. 

The group of the N-ary  node (1) is now SLN, and that of  a binary 
node where N = 2, is SL2. This SL2 is promoted to the global SL2 of  special 
relativity by the quantum condensation of Section 3, and presumably serves 
as the local structure group of the B2 arising in the classical continuum 
limit from defective nets. Qet brackets quantize in the second Fermi-Dirac,  
mapping any qet, whether even or odd in grade, into an independent 
first-grade qet. 

The quantum kinematics of  nets is expressed by + and v, and local 
causality by v and ~. In the usual quantum theory these principles are 
assigned to different levels of  theory. The synthesis of  relativity and quantum 
kinematics in QET permits the free intermixing of these principles. 

3. THE VACUUM 

What appears  as the law of nature in synchronic theories is the vacuum 
field in diachronic ones. We give a vacuum net now, as a space K of 
kinematically allowed paths, and a subspace A of dynamically allowed 
paths. 

3.1. Vacuum I 

We arbitrarily model the vacuum with a qet, not a dual qet. To build 
K and A, we form K(Z') and A(Z')  corresponding to a terminated future 
cone of some fiduciary event ~ c QET far in the past. K(Z')  comprises qets 
no more than Z '  above ~p in rank. Then we let Z ' ~ o o .  To explore the 
continuum limit, we simultaneously let Z ' ~  ~ ,  1"1--> 0 in such a way that 
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Z'/~ remains constant at the macroscopic time coordinate t of the reference 
event r 

First I infer from relativistic SL2 that events have two possible suc- 
cessors. Let those to ~b be designated by 0 ~, and write the two 6's as (I'1, ($[.~ 
Then by (1) 

,/'= =<a "~v ,/,I (20 
Second, from the role of the vector representation D(1/2, 1/2) of SL2, 

I infer that the two successors to the q/~ transform as O ~* = ~b ~ = (~s so 
that, by (1), using the antilinearity of 

~'~* = (a ~'v r (22) 
The 0~ and ~b are the five events of the elementary quantum future 

null cone (Figure 2). [This replaces the excessively symmetric pentacle of 
Finkelstein and Rodriguez (1984).] 

I iterate this process Z '  times, alternating spinor inputs proper and 
conjugate spinor inputs, and thus forming a sequence (21), (22 ) ,  �9 �9 . , (2z,), 
defining a tree of events with integer-spin qets 0 (~) = ((tr) I connected through 
intermediate integer-and-a-half-spin qets of the form 4, <~)~. [Compare the 
lattice fermion of Susskind (1977).] These make up K. 

Finally, from the macroscopic observable nature of spacetime vectors, 
I infer that a large number of such quantum modules condense into a 
four-dimensional quantum lattice. To construct an example of such D, I 
Hermitianize and symmetrize the ((or) I in the collective index (tr). There 
are 4 z symbols ((tr)l with Z 4-valued o-'s, but there are only a number of 
independent symmetric qets ({tr}[ given by the binomial coefficient Zc4 = 
O(Z4), naturally represented by points of a sector of a 4-dimensional cubicat 
lattice coordinatized by the occupation numbers for four values of ~r. Thus, 
symmetry cuts the growth of the tree of qets from exponential 4 z to 
4-dimensional. 

Each module inputs to four nearest-neighbor modules with nondecreas- 
ing occupation numbers. These four linearly independent inputs will give 
rise below to the four dimensions of spacetime. 

Fig. 2. Module of the vacuum net. Dots stand for events and represent 
independent  generators of  the Grassmann algebra QET. Each of  the three 
nodes in this net  represents an equation of  the form/3 = r(~ v c~) giving 
its output  /3 in terms of  its inputs a and 3'. Representations D(1/2 ,  0) 
(open dots) and D(0, 1/2) (solid dots) alternate from right to left. O 
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The qet 0 {~} has 2Z spinor indices. Taken for all Z up to some maximum 
value Z' ,  the ~0 {~} and q,{~z span a subspace A(Z') of QET invariant under 
SL2, corresponding to a bounded part of the past cone through 0. A = &(oo) 
is the analogue of the future timelike paths through 4J. 

The qet (vac Z'[ is taken to be the product  of  all the qJ's of A(Z') with 
Z - Z '  in any convenient order. This is a Grassmann element representing 
&(Z'). 

A is isomorphic to R M, and ~(Z ' )  to the segment of ~{~} consisting 
of tensors of  degree not greater than Z', and so both a r e  S L  2 invariant. 

Let A and F r be the standard Bose-Einstein destruction and creation 
operators on {Rr transformed by this isomorphism to act on A, with 
[d~r F ~'] = ~ ' .  More explicitly: 

Let the null qet 1 represent the initial event in the remote past, and let 
Az=(Z] to be fixed "l ink" qets with independent conjugates 6 ~* =(Z*]. 
Define the symmetrized event-pair creation operator ~ F ~ by 

The F r generate an algebra A(F) isomorphic to N{~}. Let Ar be the usual 
destruction operators upon A(F) obeying [Ar F r = ~ ' .  Then for any {o-} 
we set 

II r (ol (4) 
o-e{o-} 

with 2Z'  events in succession. This completes the construction of  A. 
This construction does not explain the four-dimensionality that space- 

time seems to have, for its generalization from N =2  to arbitrary N is 
regrettably simple. Presumably the dynamics selects N = 2 and makes nets 
with N = 1, 3, 4 , . . .  unstable today. 

Such a quantum condensation accounts for the following features of 
standard physics, which would otherwise be incomprehensible in net 
theory. 

Supermobility. From the beginning the laws of inertia and momentum 
conservation have been problems in net theory, since the net is not invariant 
under translation. Now we regard these as typical macroscopic quantum 
effects. Since Newton's first law implies that the mobility, usually defined 
as (0[force]/0[velocity]) -1 at zero velocity, is infinite in zero-temperature 
vacuum, we may call this macroscopic quantum effect supermobility. In the 
present theory supermobility belongs to the same family as the other two 
macroscopic quantum phenomena, superfluidity and superconductivity. 
Since the event pairing occurs between neighbors in time space rather than 
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momentum space, the vacuum in thermal equilibrium is presumably not a 
two-fluid system like liquid He II. 

Macroscopic Vectors. Momenta  and gauge vector fields are macroscopic 
dynamical variables and yet have to be made up out of  microscopic quantum 

vectors like the spinors ~ of  each node, which are not. Such "condensa-  
t ion" of  4, vectors into macroscopic variables occurs in the other two main 
superflows. Here spinors 6 ~ and antispinsors ~ *  must pair and condense 
to vectors 6 ~*.  All physical time-space vectors v ~ are regarded as macro- 
scopic ~b vectors v ~*  of condensed aggregates of  E-E* pairs, present only 
in the low-temperature phase, Vacuum I. The usual Minkowski coordinate 
and derivative operators may be modeled in net theory by the creation and 
annihilation operators for such pairs, the limit 13 ~ 0. 

Metric Form and Unitarity. The linear metric form gs~.~ describing 
gravity associates a macroscopic ~' vector d x ~ .  = g~.z~dx ~ with each phy- 
sical t ime-space vector dx s. This serves as the quantum metric for local spin 
experiments of an experimenter with world velocity dxS/dr. The reduction 
of  the special linear group to the unitary group may also be understood as 
a spontaneous symmetry breaking. 

This four-dimensional hypercubical net may be regarded as a synthesis 
and extension of Feynman's  two-dimensional checkerboard (Feynman and 
Hibbs, 1965) and Penrose's (1971) two-dimensional spin net. 

3.2. Continuum Limit 

Under Lorentz transformations the events of  the quantum net do not 
simply permute like classical events but undergo quantum superposition. 
A monadic qet is about as much like a cell in spacetime x momentum-energy 
as a harmonic oscillator ket is like a cell in phase space. It is exactly local, 
Lorentz invariant, and finite in a way unlike any set in classical spacetime. 
For 13 > 0 we can model neither K nor A by paths in Minkowski spacetime. 

Yet the Minkowski spacetime of the continuum quantum theory with 
all its problems must reemerge as 13 ~ 0 and Z '  ~ ~ with constant Z'13 fixed 
as the macroscopic time coordinate of  the reference event ~O. The paradox 
of the Hilbert space metric is the key to the recognition of ordinary 
Minkowski spacetime and its coordinates and derivations x ~z~*, 0~*~ within 
QET. For any finite 13, the space A(Z')  supports a finite-dimensional rep- 
resentation of  SL2 and thus admits no SL2-invariant Hilbert metric. Yet as 
13-> O, D( Z ' )  must approach the Minkowski future cone C(4J) with the SL2 
invariant L 2 metric on complex functions ~(xS)lx s ~ C(q0. 

The resolution is that a nonunitary structure can approach a unitary 
one nonuniformly in the continuum limit. Replace each basis qet ~b {~} in 
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the expansion of any qet (~PI~ D(oo)<-->C (~) by the corresponding sym- 
metrized tensor power x ~ ) / l ~  z of a 2 x 2 matrix variable x / r l  = (x~ / l~)  = 

( x ~ * / ~ ) ;  the time 1"1 gives x the dimensions of  a time when ~O is dimension- 
less. Then (dp] becomes a polynomial  dp(x) in the Hermitian matrix x of  
degree -< Z ' .  The linear isomorphism (d~[~--~qb(x) maps F~---~x'~/13 (the left 
multiplication operator) and h~--~130~ = 130/0x". As i~ ~ 0, Z ' ~  oo and dp(x) 
may nonuniformly approach a holomorphic function of x in L2(C(~)) .  For 
such functions we may define a Lorentz-invariant Hilbert norm ]ld~l[ = 
S ( d x ) i ~ ( x ) l  2. For any finite Z ' ,  qb is a polynomial  and Ilqbi[ diverges. 

As 13~0, x ~ and -icg,~ become Hermitian coordinate and energy- 
momentum vectors. No invariant norm exists f o r / ~ >  0. The operators x ~ 
and -iO,~ exist for all 13 and for both ~ and 6 ~ ,  obey the Heisenberg 
commutat ion relations exactly for all 13, but are not Hermitian for i~ > 0. 

Relative to dimensionless coordinate volume ( dx )  = dx  1~* v �9 �9 �9 v dx  22. 

the event density p~ in Vacuum I for T<< Tc is proportional  to the usual 
density: 

P~ --> 13-4(_de t g~ ,)~/2 T~ Tc  ~ 0 (5 )  

where g~, is the pseudometric quadratic form. The fundamental  time 13 
appears  because g~, has units (time) 2, while p~ is a pure number. 

The key element of  manifold spin structure for us is the local structure 
group SL2 of a B2. We identify this with the group SL2 of a binary node, 
and the metric form g ~ .  in (vacl with the Pauli matrices. 

4. DYNAMICS 

The algebra A is our quantum version of a causal spacetime. We turn 
now to the dynamics of  particles on this background. The infinite hyper- 
cubical lattice of  basis qets r  is our correspondent to the Feynman 
checkerboard (Feynman and Hibbs, 1965). What moves on our board, 
however, are not separate men, but defects in the board itself, and they 
therefore do not move in an independent manner,  but a way already 
determined by the board itself. Each phenomenological  dynamics, such as 
those of  gravity and the electroweak and strong forces, is now a further 
clue to the actual structure of  the vacuum net. Here we see what the Dirac 
equation might tell us about  the net. In this second stage of exploration we 
still use only operators in the subalgebra D of QET, but we revise (vac I. 

We begin by seeking a correspondence principle connecting nets with 
the usual continuum dynamics. 

Since our basic variables are all Grassmann qets, we seek a correspon- 
dence with the Schwinger dynamical principle for a complex Grassmann 
field O(x), ~b*(x) in classical spacetime. The presentation of DeWitt (1984) 
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for the more general superfields may be specialized to our Grassmann fields 
by discarding the zero-grade parts (his bodies) of  his fundamental  field 
(history); our fields are, in his terms, pure soul. Since the net is a global 
entity, I review the algebraic structure of  global relativistic ("third-quant- 
ized," "funct ional")  diachronic theories. 

4.1. Diachronic Quantum Theories 

A source in S maximally describes the i /o  process relative to the system 
under study (Section 1.7). The principle of  superposition requires S to be 
a module over some ring of  coefficients. S is to be a Grassmann algebra, 
so (to avoid superselection rules) the ring must be commutative; the complex 
numbers C are convenient for the time being. Anticipating a correspondence 
to be established below, I write a source in S as a dual vector [. (. First-grade 
generators of  S are called elementary sources. 

A vector (-[ dual to a source assigns a transition amplitude to each i /o  
process; it therefore serves as a force law or law of motion, and is called 
a field. (These are external fields.) In elementary quantum physics fields 
modify the potential energy but not the kinetic energy. Then we learn that 
the most intimate parameters of  the system, such as its charge and mass, 
may be modified by suitable fields. In diachronic theories the entire dynami- 
cal law is regarded as a field. I write F for the space of fields. The first-grade 
generators of  F are called elementary fields. Each of F and S is included 
in the dual of  the other. 

QET is a Grassmann algebra with causal structure. So are the S and F 
of continuum fermionic source theory; their causal structure is that of  the 
underlying Minkowski spacetime. Therefore I suppose that QET corresponds 
to S or F. We decide which by our locality postulates: The i /o  processes 
may be as nonlocal as we please, but the vacuum field is the exponential 
of  the action integral, which is generally postulated to be a local function 
of the elementary fields. Since I have given a local construction for a vacuum 
qet, I suppose now that qets correspond to fields, not sources; and dual 
qets to sources, therefore. 

In diachronic Grassmann theories a source [.( is a Grassmann poly- 
nomial in elementary sources ~y with index y, which may be regarded as 
components  of  an elementary source vector ~7. Each ~Ty is an independent 
i /o  process of  the experimenter, their Grassmann product  v is their joint 
operation or disjoint union, and their sum + is quantum superposition. 
For a complex theory we adjoin independent conjugate sources ~7". Dually, 
a field (.I may be written as a polynomial in dual generators ~Y called 
elementary fields; the symbols and concepts of  ~7 and ~b are those of  
Schwinger (1970). A common locality postulate is that the field (vac I may 
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be factored as 

(vacl: = pe is 

with S = S(q,, 0*) and p = P ( 0 ,  r local in the fields and formally real. 
When we further specialize this general diachronic Grassmann scheme 

to the standard field-theoretic one in a continuous spacetime, the index y 
consists of a spacetime point x and internal variables, and fields 0 y c o v e r  

the experimental spacetime region as the index y varies. The Grassmann 
algebra is then a continuous one, with independent generators for every 
point of Minkowski spacetime, an ill-defined concept optimistically indicat- 
ing a limiting process to be constructed. In the continuum theory the 
Grassmann identity element 1 in S (which has first-grade component 0) 
then represents shielding the experimental region from all i /o  processes. 

The fields tp r are even more local than the usual local fields of syn- 
chronic theories. Dynamical equations relate usual fields at one point to 
those at another; 0's at different spacetime points are independent variables 
subject to no dynamical equations because they represent actions of the 
experimenter, whose dynamics is left out of the system under study. To 
express this difference one calls the 0's ultralocal and external. Causal 
relations among the 0's are inherited from the underlying Minkowski 
spacetime. 

We now perform a Berezin Fourier transform ~':(vacl-~ I~'vac( of the 
field (vacl integrating with a volume element [Iy dO y = (dO). The ~" changes 
variables from the O's to dual Fourier transform variables, which are 
therefore 7's, which anticommute with the &s. Then 

I~'vac(: = S (dO v dt~*)p exp( iS+ i7*0 + i0*7)  (6) 

This is Feynman path-integral form of the Feynman-Schwinger action 
principle, and appears here as a definition of I~vac<. The term S,: = 7 " 0  + 
0 " 7  in the exponent of  (6) is the source term, S + S.  is the classical action, 
and p = P(0, r is the measure density. In the continuum theory, (6) is 
not a well-defined expression, but the starting point of a renormalization 
program aimed at defining it. 

Complex-valued, antisymmetric, Z-particle propagators 

G [ y l , . . . , y z ]  = G([y])  

in the vacuum are given by 

G([y]) :  = I~'vac((o/07)tYl(7 = 01 = 17 = 0(~0EYl(vacl 
(7) 

1,7 = o<= = = 01 

where the ket ( 7 = 01 is such that for any function f (  7 ), I f ( 7  )<,7 = 01 = f(0) ;  
and 17 = 0( is its Fourier transform. 
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The special system of left-handed fermions in a B2 described by a Weyl 
spinor field O~(x) has the source term and derivative (kinetic) term 

s, = f (Sx)(q~=*n~+ n~.~ ~) 

so= f (dx)q,~*O~.~4, ~ 
(8) 

s where 0x.~ = g~*xOs, for the generalization of So from B 2 to BN see Holm 
(1989). These terms are responsible for the leading terms in the Weyl and 
Dirac equations, and, through the metric form g, give primary information 
about spacetime structure. I confine attention to them for now and leave 
particle interactions and masses for later. 

We now require the corresponding concepts in quantum spacetime. I 
use "corresponding" in the sense o f  Bohr, but now for the limiting process 
E-~ 0 rather than h ~ 0. I construct (vac I to allow for the propagation of 
defects according to the Dirac equation. 

For the reason given in Section 1, let us suppose that the entities 
corresponding to fields and sources for nets are qets and dual qets. For the 
derivatives and integrals with respect to fields we now require the following 
algebra. 

4.2. Berezin Calculus of  Nets 

As usual, we imbed the Grassmann algebra QET in the (Clifford) algebra 
A(QET) as left multiplication (creation) operators, and the dual space QET D 
in A(QET) as derivation (destruction) operators. As ~ ranges over a basis 
of  QET1, 0~: ranges over the dual basis ofQET D. Then ~: = (~[ is a Grassmann 
variable independent of ~:, like ~:*. 

Therefore 

4.3. Quantizing the Quantum Action Principle 

Suppose that fermions are defects in the net. We quantize the classical 
spacetime continuum action principle so that the continuum fermion annihi- 
lator ~(x)  corresponds to a defect annihilator, that is, an event creator, 
~ = ( { c r } ~  I. This leads to the following natural replacements in the 
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general principles (6) and (7) and in the specific act ion (8): 

In (6) and (7) In (8) 

fields ~, $* --> qets ~, $* Ox*~ --> Ax*x 
sources ~, "q*--> dual qets ~7, ~* $~(x~), SX*(x~)__ > O{~}x, r 
ket (vac]-> qet (vacl S, -> S n = ~{~}x~b x{~} + conjugate 

X* X{~} x integration-> {o-} contraction Sa ~ Sa = 0{~*} Ax*x, + conjugate 
0 n ~ O n 

We lower indices {o-*} in So with the Levi-Civita tensor  ex~,, commit t ing  
us to N = 2 for  now. The contract ion o f  cr with ~r* uses the Hermit ian 
symmetry  o f  o-. Then (6) becomes  

I~-vac(= j (dO v dq ,* )p  exp (iS~x+ iSn ) (9) 

and the Dirac vacuum field is not  the previous (vacl, but  
. r  , X *  i , ~;{o-} - -  (vacl = exp ~L ~u{~,*} az*x~U -r ~?{~}z$~{~} + conj + S']  (10) 

where S'  includes omit ted mass terms and couplings.  
Unlike (6), the new act ion principle (8) is a well-defined finite algebraic 

expression for any finite spacetime volume ~ ,  in a Grassmann  algebra over 
a linear space o f  finite d imension  ~(f~/l~4), with no limiting processes to 
be performed.  The Gras smann  unit 1, the first term in the power  series for 
the exponential ,  now represents,  not  a totally shielded experimental  region, 
but  the null set. The maximal  experiment  or source creates all spacet ime 
nodes  o f  the experimental  plexus and annihilates them back down to the 
null set. The previous vacuum net is represented by the last terms in (10), 
those which create the m a x i m um  possible number  o f  nodes in D subject 
to the exclusion principle. 

4.4. Deduction of Dirac Equation 

Obviously the spinor  substructure o f  (vac[ can suppor t  a cor respondent  
o f  the Dirac equation. A sketch suffices for  now. Dirac fou r -componen t  
spinors enter the vacuum net in much  the usual way: The destruction 
opera tor  Ax*~ maps  the l inear space C f~}x into a different space CIr. }, not  
into itself. An opera tor  that  works within one linear space is part icularly 
useful for forming propagators .  This l inear space is the usual direct sum 
CXOCx.  = C a with Dirac index ~. 

We imbed C {~} natural ly within C {~}, and raise and lower a ' s  with * 
and the Pauli metric 

~=(~.~,): (~x@n~.)-~(n~.@-~ ~) 
which uses implicit 2 x 2 Levi-Civita e's. Then the destruction opera tor  Ax.~ 
induces an opera tor  A = (A~,) on C ~{~}. Here, A is a reticular cor respondent  
to the chiral Dirac differential opera tor  a+ = �89 Ys)720~. 



462 Finkelstein 

We may then use the Dirac operator formalism to complete the square 
in Ss+S, in the standard way. Let S =  (S~!~,~) be a spinor kernel inverse 
to A~,. The propagator  W(~)  for S~t is then given by 

_ ex- r i_  S~{ ~} _~'~-'}1 det(S 1) e x p [ i W ( r l ) ] -  r'L ' t ~  ~'~'~q J 

Away from the source rl the propagator  W obeys A W = 0, which becomes 
the massless chiral Dirac equation in the continuum limit ~--> 0. Events of  
integer spin 0 ~  similarly support  the complex-conjugate chiral Dirac 
operator, which provides a spinor of  opposite chirality; the two together 
make a whole Dirac spinor. The plexic correspondent  of  the Dirac mass 
term SM = M S (dx)~p*~O is then easy to supply. 

4.5. Internal Particle Symmetries 

To convey the phi losophy presently underlying this approach to nature, 
let me sketch a tentative program for understanding the internal particle 
symmetries in net dynamics. Fortunately these all seem to b e  gauge sym- 
metries, and may therefore act on defects in the vacuum net, in the way 
that the Burgers vector does on defects in a crystal. There are two approaches,  
phenomenological  and fundamental.  

Phenomenologieal Approach. Since we already have the net correspon- 
dent to spin, and none to charge or the other coupling constants, the first 
step will likely be a theory of the transport of  spin in the vacuum net. That 
should constitute a quantum theory of the gravitational field, which is the 
curvature of  the spin connection. 

The next work is to extend the gauge theory of nets from gravity to 
the other interactions. This will require us to assign defect transformations 
to the known internal symmetry generators. Each of the known phenomeno-  
logical interactions can be transplanted from the spacetime continuum to 
nets using the correspondence through source theory. Each such force then 
provides another window on the underlying one that forms the net itself. 

In the most immediate model of  color SU3 symmetry within net theory, 
each event has not only the two "external"  inputs 3 already described, 
which link up into long fibers of  the macroscopic vacuum, but also three 
additional microscopic "internal" inputs which do not. The color group 
then mixes the internal inputs. This vacuum is not a checkerboard but, a 
discrete quantum version of Kaluza-Klein  theory. More generally, color 
ought to label a natural trio of  distinguishable defects in the vacuum net 
which are isomorphic but not mixed by SL2. 

In the vacuum net every event has two local SL2 groups. One is the 
symmetry of the successors already discussed. The second is a T image of 
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the first, mixing two predecessors. Its existence depends on the condensate 
structure. In the vacuum net, one combination of these two SL2 generators 
survives as the exact global Lorentz symmetry; perhaps this leaves other 
combinations for approximate internal particle symmetries. 

In this approach our goal is a particular vacuum net, and despite its 
global nature we do not ask where it comes from; after all, it is simpler 
than the equally global structure it replaces, a spacetime manifold and 
action functional, whose infinite internal complexity is masked by 
familiarity. 

Fundamental Approach. The deeper question is the nature and origin 
of dynamical law or laws. In a synchronic quantum theory, the dynamical 
law is provided from outside the theory, and it is not too difficult to accept 
it as an eternal absolute element of nature; this would be comfortably 
consistent with some traditions. But the dynamical law of the synchronic 
theory is merely the ambient or vacuum field of  the diachronic one, a 
surrogate for the exosystem, and unmistakably a contingent element of 
nature, not a necessary one. The term ether is perhaps less misleading than 
vacuum: What seemed to be the eternal global dynamical law is merely the 
ether, here the vacuum net. Even if we discover its structure by the 
phenomenological approach described above, we must still discover its local 
principle. It conflicts with strong locality to take as fundamental any global 
vacuum net, as much as any field-theoretic action principle, not matter how 
accurate it may be for some purposes. 

Gauge theories reduce this question enormously by assuming that the 
ether (in the guise of  the vacuum field, the Feynman amplitude, and the 
action principle.) is gauge invariant and of low differential order, both 
principles allied to locality. For gravity, gauge invariance becomes coordin- 
ate invariance, with which Hilbert fixes the action (and now the gravitational 
ether) up to two physical constants G and A. Since net theory purports to 
be still more unified than gauge theories, it should be required to relate 
these physical constants to c, h, and /~. Net theory, however, has natural 
correspondents for locality and low order, but not for gauge invariance as 
yet. Thus, the same question is fundamental to both the phenomenological 
and the fundamental approach: What is the gauge theory of nets? I expect 
this theory to be an extension of the present theories of relativity along the 
following lines. 

The idea that the dynamical law is itself contingent and evolves [IJro- 
posed, for example, by C. S. Peirce in his First Flash theory of  around 
1900; see Peirce (1931-1935)] has long been implicit in standard physics 
in the concept of external field. For example, Newton's law of  motion for 
the earth is contingent on the absence of  strong gravitational waves; if we 
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include the gravitational field in the system, the concept of  dynamical law 
changes, and Newton's law is no longer even a candidate. Similarly, Dirac's 
equation governs a hydrogen atom only in the absence of external muon 
beams. With one partition a field is external and subject to no dynamical 
equations; with another it is internal and evolves dynamically. 

In general, quantum theory asserts that the experimenter and the 
experimentee are parts of  an inseparable whole system, insists that neverthe- 
less we must partition this system, and does not tell us how. Call the two 
parts of this partition the endosystem and exosystem; the endosystem is the 
entity under study, and the exosystem includes the experimenter, the experi- 
mental apparatus, and the relevant external environment. The exosystem is 
defined for the purposes of synchronic quantum theory by a maximal 
commutative subalgebra of  the algebra of endosystem variables, containing 
all the variables determined by the exosystem. In classical physics this is a 
commutative algebra given once for all with the phase space, but in quantum 
physics it varies from one experimenter to another. 

The concept o f  dynamical law is defined relative to the quantum 
partition. Call this kind of relativism, third relativity. The first relativity is 
that of classical theories, including special and general relativity, which fix 
both the endosystem and the exosystem and merely permute their variables 
among themselves; while the second relativity is that of  quantum theories, 
which fix the endosystem but transform the exosystem, bringing in different 
variables. Third relativity transforms both endosystem and exosystem, and 
thus extends second relativity as second does first. A special case of third 
relativity is already formulated by Von Neumann in his theory of  measure- 
ment, when he postulates that the determinations by an exosystem I of  an 
endosystem III do not depend on whether the apparatus II is lumped with 
I or III. We generalize this to the third relativity principle: The quantum 
theories for different partitions of the system are consistent. 

QET regarded as a universal quantum language does not fix the endosys- 
tem, and so seems a reasonable mode of  expression to explore the third 
relativity principle. If  the concept of third relativity transformation can be 
developed to include and unify those of the coordinate group, gauge groups, 
and renormalization groups, it would not be surprising if third relativity 
restricted the form of  dynamical laws more strongly than first and second. 

5. CONCLUSION 

Net theory evidently fuses quantum and relativity principles in a 
fundamental and locally finite way. In a unified theory of the standard kind, 
the vertical structure of  physics is kept more or less intact, and one unifies 
by a horizontal merger on the top levels. In net theory particles are defects 
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in the vacuum net and their unification is a by-product of an unanticipated 
vertical merger accomplished by the operator ~, which unites the six levels 
of quantum field theory (consisting, say, of classical predicate algebra, set 
theory, topology, and differential geometry, and quantum kinematics and 
dynamics) into the one of quantum net dynamics. Quantum logic and 
classical set theory are both reformulated to permit this fusion. My quantum 
logic fulfills principles of  relativistic locality, intensionality, and extensional- 
ity that Von Neumann's  lacks. My set theory is based on disjoint union 
and the ~ operator instead of union and the ~ relation. 

To illustrate this fusion of relativity and quantum theory, I develop a 
trial ~p vector for the vacuum as a quantum condensation of pairs of nodes 
that supports a Dirac equation for its holes. This vacuum net has exact 
Lorentz SL2 invariance, but also an inherent P and T asymmetry. I 
identify this tentatively with the weak P and T violation. Dimensional 
grounds (though these are not yet reliable in a theory with so many large 
dimensionless numbers available) then suggest that the critical temperature 
Tc should be closer to Mw ~ 10 2 GeV, the mass of the W particle, than to 
the Planck mass M p -  10 a9 GeV, and that balls of a high-temperature phase, 
Vacuum II, are produced in experiments today as well as in the creation 
of the universe. 

The internal consistency and unusual unity of this fusion of  quantum 
theory and relativity give me confidence that quantum nets provide the 
correct theory of quantum spin: A spin transformation permutes the two 
successors to an event among themselves. The "quantum two-valuedness" 
of Pauli counts the two successors to each event. 

APPENDIX 

Some notation, especially for indices: 

C complex conjugation 
D dual 
E a D(1/2 ,  0) or Weyl spinor index with values 1' and ~ (spin up and 

down) 
* labels independent variables cogredient to the complex conjugate 
E* = T*, ~* is a conjugate Weyl spinor index independent of  E 
s space-time index 
SH Hermitian-symmetrizes in the index pair ~*~ 
tr =Si:i~*~=~'*~ ', ~'*$, $*~', $*J,, a real-D(1/2,  1/2) or sesquispinor 

index 
(o-) = o-~... O-z, a collective index made of  Ztr's 
S_ average over the symmetric group Sz on (o-) with weight +1 ( -1 )  

for even (odd) permutations 
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Is] 
S+ 

{o-} 
R ~ 
R{,~} 

OL 

C a 

a(v) 
v(.) 

S . . . .  ( s ) ,  a col lect ive an t i symmet r i c  index  m a d e  o f  Z s ' s  

average  over  the  symmet r i c  g roup  Sz  on (o-) 
= S + . . .  (cr), a col lect ive symmet r ic  index  m a d e  o f  Z o"s 
real  l inear  space  o f  vectors  r ~ 
symmet r i c  t ensor  a lgebra  over  gU 
Di rac  or  D ( 1 / 2 ,  0 ) • D ( 0 ,  1/2) ~ index  
complex  l inear  space  o f  Di rac  sp inors  c a 
a lgebra  o f  l inear  t r ans fo rmat ions  o f  the  l inear  space  V 
G r a s s m a n n  a lgebra  genera ted  by  the var iables  or  the  l inear  space  �9 
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